 # General Information, Facts & Tables [Boolean Mathematics]

Overview

top of page

Boolean logic is the basis of digital electronics and computing. By combining these simple gates together, extremely complex algorithms can be calculated.
Ā

Basic Gates

The three basic gates are AND, OR and NOT, which can be combined in various configurations to create all other gates. There is a direct relationship of logic gates to electronics, and some of the gates can be easily explained as simple electric circuit diagrams.
ĀĀ

AND Gate

top of page

Symbol AND Truth Table In A In B Out C True (1) True (1) True (1) True (1) False (0) False (0) False True (1) False (0) False (0) False (0) False (0)

The AND gate could be thought of as two switches in series.
Ā

Notation Electronic Representation OR Gate

top of page

Symbol OR Truth Table In A In B Out C True (1) True (1) True (1) True (1) False (0) True (1) False (0) True (1) True (1) False (0) False (0) False (0)

The OR gate could be thought of as two switches in parallel.
Ā

Notation Electronic Representation NAND Gate

top of page

Symbol NAND Truth Table In A In B Out C True (1) True (1) False (0) True (1) False (0) True (1) False (0) True (1) True (1) False (0) False (0) True (1)

Also known as a NOT AND gate.
Ā

Notation NOR Gate

top of page

Symbol NOR Truth Table In A In B Out C True (1) True (1) False (0) True (1) False (0) False (0) False (0) True (1) False (0) False (0) False (0) True (1)

Also known as a NOT OR gate.
Ā

Notation XOR Gate

top of page

Symbol XOR Truth Table In A In B Out C True (1) True (1) False (0) True (1) False (0) True (1) False (0) True (1) True (1) False (0) False (0) False (0)

Also known as an Exclusive OR gate.
Ā

Notation XNOR Gate

top of page

Symbol Truth Table In A In B Out C True (1) True (1) True (1) True (1) False (0) False (0) False (0) True (1) False (0) False (0) False (0) True (1)

Also known as an Exclusive NOT OR gate.
Ā

Notation NOT (Inverter) Gate

top of page

Symbol NOT Truth Table In A Out B True (1) False (0) False (0) True (1)

The ĀNOT gate reverses (inverts) the state of the input signal. Ā

Notation Buffer Gate

top of page

Symbol Buffer Truth Table In A Out B True (1) True (1) False (0) False (0)

The buffer gate is used in electronics to ensure that the voltage of the logic output signal is the correct voltage. It is not used in other representations of logic. It is included here for completeness only.
Ā

Notation Boolean Algebra Theorems

top of page

 Commutative Property  Associative Property  Distributive Property  Theorems         DeMorgans Theorem

top of page

 DeMorgans Theorem states that "Any logical function can be implemented using either (inverters and AND gates) or (inverters and OR gates). DeMorgan's Identities  1 2 3 4 5 6 7 8 9 10          F (0) F (0) T (1) T (1) F (0) T (1) F (0) T (1) T (1) T (1) F (0) T (1) T (1) F (0) F (0) F (0) T (1) F (0) F (0) T (1) T (1) F (0) F (0) T (1) F (0) F (0) T (1) F (0) F (0) T (1) T (1) T (1) F (0) F (0) T (1) F (0) T (1) F (0) F (0) F (0)

Ā

top of page

The logic gates described above have only one or two inputs. With the exception of "Inverters" (NOT) and "Buffers" all other gates can accept as many inputs as required.
Ā